ใ‚ใกใ‚ƒใใกใ‚ƒ ้–‹็™บ่€…๐Ÿฆพ
์ฝ”๋”ฉ ์ง ๐Ÿ’ช
ใ‚ใกใ‚ƒใใกใ‚ƒ ้–‹็™บ่€…๐Ÿฆพ
  • ์นดํ…Œ๊ณ ๋ฆฌ (135)
    • ๊ฐœ๋ฐœ ํ™˜๊ฒฝ ๊ตฌ์ถ• (12)
      • ๊ฐœ๋ฐœ ํ™˜๊ฒฝ (5)
      • DB (0)
      • Node.js (4)
      • ํ˜•์ƒ ๊ด€๋ฆฌ (2)
      • Spring (1)
    • ์›น (11)
      • React (5)
      • ์ŠคํŒŒ๋ฅดํƒ€์ฝ”๋”ฉํด๋Ÿฝ__์›น (6)
    • ๋ชจ๋ฐ”์ผ (2)
      • ์•ˆ๋“œ๋กœ์ด๋“œ (2)
    • ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด (55)
      • C (13)
      • Python (15)
      • SQL (5)
      • Java (22)
    • ์‚ฌ๋ฌผ์ธํ„ฐ๋„ท (11)
      • ์•„๋‘์ด๋…ธ (11)
    • ์ผ์ƒ (31)
      • ๋ง›์ง‘ (13)
      • ๋žญํ‚น๋‹ญ์ปด (4)
      • ํ›„๊ธฐ (11)
      • ์š”๋ฆฌ (3)
      • ์žก๋‹ด (0)
    • ๊ต์–‘ (4)
      • ์‹ฌ๋ฆฌํ•™ (3)
      • ํ…Œ๋‹ˆ์Šค (1)
    • ์ž๊ฒฉ์ฆ (9)
      • ์ •๋ณด์ฒ˜๋ฆฌ๊ธฐ์‚ฌ (9)

๋ธ”๋กœ๊ทธ ๋ฉ”๋‰ด

  • ๐Ÿ’ป github

์ธ๊ธฐ ๊ธ€

์ตœ๊ทผ ๊ธ€

ํ‹ฐ์Šคํ† ๋ฆฌ

hELLO ยท Designed By ์ •์ƒ์šฐ.
ใ‚ใกใ‚ƒใใกใ‚ƒ ้–‹็™บ่€…๐Ÿฆพ

์ฝ”๋”ฉ ์ง ๐Ÿ’ช

[Python] ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๐Ÿ“ˆ (1)
ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด/Python

[Python] ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๐Ÿ“ˆ (1)

2022. 5. 9. 20:03

ใ€Š ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ํ™œ์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ใ€‹

 

[ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ]

 - ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ(Jupyter Notebook)์ด๋ž€ Jupyter์—์„œ ์ œ์ž‘ํ•œ ํŒŒ์ด์ฌ์šฉ ํ†ตํ•ฉ ๊ฐœ๋ฐœํ™˜๊ฒฝ(IDE)์ด๋‹ค.

 - ์ฝ”๋“œ๋ฅผ ํ•œ์ค„์”ฉ ์ž‘์„ฑํ•˜์—ฌ ์‹คํ–‰, ๊ฒฐ๊ณผ ํ™•์ธ์ด ๊ฐ€๋Šฅ

 

[ ์•„๋‚˜์ฝ˜๋‹ค ]

 - ์•„๋‚˜์ฝ˜๋‹ค(Anaconda)๋Š” Anaconda์‚ฌ์—์„œ ํŒŒ์ด์ฌ ๋ฐ R์–ธ์–ด ํŒจํ‚ค์ง€, ์˜์กด์„ฑ ๊ด€๋ฆฌ ๋ฐ ๋ฐฐํฌ ๋“ฑ ์—ฌ๋Ÿฌ ๊ธฐ๋Šฅ์„ ์ œ๊ณตํ•˜๋Š” ์กฐ๊ฑด๋ถ€ ๋ฌด๋ฃŒ ์˜คํ”ˆ ์†Œ์Šค SW์ด๋‹ค.

 - ์•„๋‚˜์ฝ˜๋‹ค ์„ค์น˜ ์‹œ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์ด ํ•จ๊ป˜ ์„ค์น˜๋˜๋ฉฐ ์•„๋‚˜์ฝ˜๋‹ค ๊ฐ€์ƒํ™˜๊ฒฝ์„ ํ†ตํ•ด ์‹คํ–‰ ๊ฐ€๋Šฅ

 - ๋ณธ์ธ PC์˜ OS์™€ ์‚ฌ์–‘์— ๋งž๊ฒŒ ์„ค์น˜ํ•˜์—ฌ ์ด์šฉ

 

ใ€ˆ ์•„๋‚˜์ฝ˜๋‹ค ์„ค์น˜ ๋งํฌ ใ€‰

www.anaconda.com/products/individual

 

Anaconda | Anaconda Distribution

Anaconda's open-source Distribution is the easiest way to perform Python/R data science and machine learning on a single machine.

www.anaconda.com

 

 

[ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ์‹คํ–‰ ]

 - ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ ์‹คํ–‰์‹œ ์•„๋‚˜์ฝ˜๋‹ค ๊ฐ€์ƒํ™˜๊ฒฝ์„ ํ†ตํ•ด ์‹คํ–‰๋œ๋‹ค.

 - ์ดˆ๊ธฐ ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์˜ ๊ธฐ๋ณธ ๊ฒฝ๋กœ๋Š” [ C๋“œ๋ผ์ด๋ธŒ > ์‚ฌ์šฉ์ž > ์‚ฌ์šฉ์ž ์ด๋ฆ„ ] ์ด๋ฉฐ 

   ์‚ฌ์šฉ์ž ์ด๋ฆ„ ํด๋” ์•ˆ์˜ ๋ชจ๋“  ํŒŒ์ผ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค.

 - ์‹ค์Šต์šฉ ํด๋”๋ฅผ ์ƒ์„ฑ ํ›„ ์‹ค์Šต์— ์‚ฌ์šฉ๋  csvํŒŒ์ผ์„ ํ•ด๋‹น ๊ฒฝ๋กœ์— ์ €์žฅํ•œ๋‹ค.

 - seoul.csv : ์—ฐ๋„๋ณ„ ์„œ์šธ์‹œ์˜ ํ‰๊ท /์ตœ์ €/์ตœ๊ณ  ๊ธฐ์˜จ์ด ์ €์žฅ๋˜์–ด ์žˆ๋Š” ๊ณต๊ณต๋ฐ์ดํ„ฐ ํŒŒ์ผ

 

 

 

 

[ csv ๋ชจ๋“ˆ์„ ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ ์˜ˆ์ œ ]

 

โ‘  ๋ฐ์ดํ„ฐ์˜ ๋ชจ๋“  ํ–‰ ์ถœ๋ ฅ

# Jupyter Notebook
import csv 

f = open('seoul.csv', 'r', encoding='cp949')
# reader(csvfile, dialect='', **fmtparams) : iterator ํƒ€์ž…์˜ reader ๊ฐ์ฒด๋ฅผ ๋ฐ˜ํ™˜
# ๋ฐ˜ํ™˜๋˜๋Š” ๊ฐ ๋ผ์ธ์€ ์ปฌ๋Ÿผ๋“ค์˜ ๋‚˜์—ด(list type)
data = csv.reader(f, delimiter=',') 

for row in data :
    print(row)

f.close()

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

['๋‚ ์งœ', '์ง€์ ', 'ํ‰๊ท ๊ธฐ์˜จ(โ„ƒ)', '์ตœ์ €๊ธฐ์˜จ(โ„ƒ)', '์ตœ๊ณ ๊ธฐ์˜จ(โ„ƒ)']
['1907-10-01', '108', '13.5', '7.9', '20.7']
['1907-10-02', '108', '16.2', '7.9', '22']
...

 

โ‘ก ๋ฐ์ดํ„ฐ์˜ ์ฒซ๋ฒˆ์งธ ํ–‰(ํ—ค๋”) ์ถ”์ถœ ํ›„ ์ถœ๋ ฅ

# Jupyter Notebook
import csv

f =open('seoul.csv')
data = csv.reader(f)
# next(iterator[, default]) : ์ฒซ๋ฒˆ์งธ ๋ฐ์ดํ„ฐ ํ–‰์„ ์ฝ์–ด์˜ค๊ณ  
#                             ๋ฐ์ดํ„ฐ ํƒ์ƒ‰ ์œ„์น˜๋ฅผ ๋‹ค์Œ ํ–‰์œผ๋กœ ์ด๋™
header =next(data)  
print(header)     
f.close()

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

['๋‚ ์งœ', '์ง€์ ', 'ํ‰๊ท ๊ธฐ์˜จ(โ„ƒ)', '์ตœ์ €๊ธฐ์˜จ(โ„ƒ)', '์ตœ๊ณ ๊ธฐ์˜จ(โ„ƒ)']

 

โ‘ข ๋ฐ์ดํ„ฐ์˜ ์ฒซ๋ฒˆ์งธ ํ–‰(ํ—ค๋”) ์ถ”์ถœ ํ›„ ๋ฐ์ดํ„ฐ์˜ ๋ชจ๋“  ํ–‰ ์ถœ๋ ฅ

# Jupyter Notebook

import csv

f =open('seoul.csv')
data = csv.reader(f)
header = next(data)
for row in data :
    print(row)	
# next() ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์˜ ์ฒซ๋ฒˆ์งธ ํ–‰์„ ์ฝ์–ด์˜ค๊ณ  ๋‹ค์Œ ํ–‰์œผ๋กœ ์ด๋™ ํ–ˆ๊ธฐ์— ์ฒซ๋ฒˆ์งธ ํ–‰ ์ถœ๋ ฅx
f.close()

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

['1907-10-01', '108', '13.5', '7.9', '20.7']
['1907-10-02', '108', '16.2', '7.9', '22']
...

 

โ‘ฃ ๋ฐ์ดํ„ฐ์˜ ์ตœ๊ณ ๊ธฐ์˜จ ์ค‘ ์ตœ๋Œ€๊ฐ’ ์ฐพ๊ธฐ (1)

# Jupyter Notebook

import csv

f =open('seoul.csv')
data = csv.reader(f)
header =next(data)
for row in data :
    # row[3] = float(row[3])
    row[-1] = float(row[-1]) # ์ตœ๊ณ  ๊ธฐ์˜จ์—ด์˜ ๋ฌธ์ž์—ด ๋ฐ์ดํ„ฐ๋“ค์„ ์‹ค์ˆ˜๋กœ ๋ณ€ํ™˜
    print(row)
f.close()

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

['1907-10-01', '108', '13.5', '7.9', 20.7]
['1907-10-02', '108', '16.2', '7.9', 22.0]
...
['1950-08-31', '108', '25.4', '20.1', 32.5]
--------------------------------------------
ValueError: could not convert string to float: ''

'1950-08-31'๋…„ ์ดํ›„ ๋ฐ์ดํ„ฐ ์ค‘ ์ผ๋ถ€์˜ ๊ธฐ์˜จ ๊ฐ’์ด ๋ˆ„๋ฝ๋˜์–ด ์˜ค๋ฅ˜ ๋ฐœ์ƒ

 

โ‘ฃ ๋ฐ์ดํ„ฐ์˜ ์ตœ๊ณ ๊ธฐ์˜จ ์ค‘ ์ตœ๋Œ€๊ฐ’ ์ฐพ๊ธฐ (2)

# Jupyter Notebook
# ๋ˆ„๋ฝ ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ ์ž„์˜์˜ ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•˜์—ฌ ํƒ์ƒ‰

import csv

max_temp =-999     # ์ตœ๊ณ  ๊ธฐ์˜จ ๊ฐ’์„ ์ €์žฅํ•  ๋ณ€์ˆ˜
max_date =''       # ์ตœ๊ณ  ๊ธฐ์˜จ์ด ๊ฐ€์žฅ ๋†’์•˜๋˜ ๋‚ ์งœ๋ฅผ ์ €์žฅํ•  ๋ณ€์ˆ˜
f =open('seoul.csv')
data = csv.reader(f)
header =next(data) # ํ—ค๋” ์ถ”์ถœ
for row in data :
    # ์ตœ๊ณ  ๊ธฐ์˜จ๊ฐ’์ด ๋ˆ„๋ฝ๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ -999์˜ ๊ฐ’์„ ์‚ฝ์ž…ํ•˜์—ฌ ๋Œ€์ฒด
    if row[-1] =='' :
        row[-1] =-999
    row[-1] = float(row[-1])
    # ์ตœ๊ณ  ๊ธฐ์˜จ ๋ฐ์ดํ„ฐํ–‰ ๋ฐœ๊ฒฌ ์‹œ max_temp, mex_date ๋ฅผ ํ•ด๋‹น ํ–‰์˜ ๋ฐ์ดํ„ฐ๋กœ ๋ณ€๊ฒฝ 
    if max_temp < row[-1] :
        max_date = row[0]
        max_temp = row[-1]
f.close()
print('๊ธฐ์ƒ ๊ด€์ธก ์ด๋ž˜ ์„œ์šธ์˜ ์ตœ๊ณ  ๊ธฐ์˜จ์ด ๊ฐ€์žฅ ๋†’์•˜๋˜ ๋‚ ์€',max_date,'๋กœ, ',max_temp,'๋„ ์˜€์Šต๋‹ˆ๋‹ค.')

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

๊ธฐ์ƒ ๊ด€์ธก ์ด๋ž˜ ์„œ์šธ์˜ ์ตœ๊ณ  ๊ธฐ์˜จ์ด ๊ฐ€์žฅ ๋†’์•˜๋˜ ๋‚ ์€ 1994-07-24 ๋กœ,  38.4 ๋„ ์˜€์Šต๋‹ˆ๋‹ค.

 

 

 

 

[ maplotlib ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ ํŒจํ‚ค์ง€๋ฅผ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์˜ˆ์ œ ]

 

ใ€ˆ matplotlib ํŒจํ‚ค์ง€ docs ใ€‰

https://matplotlib.org/3.5.0/api/

 

โ‘  ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ์˜ˆ์ œ (1)

# Jupyter Notebook

import matplotlib.pyplot as plt

# plt.plot(x, y) : ์ง์„  ํ”Œ๋กฏ์„ ๊ทธ๋ฆฌ๋Š” ํ•จ์ˆ˜, 
# x์ถ• ๋ฏธ์ง€์ • ์‹œ ์ž๋™์œผ๋กœ [0, 1, 2, 3] ๊ณผ ๊ฐ™์ด ์—ฐ์†๋œ x์ถ• ๊ฐ’ ์ž๋™ ์ƒ์„ฑ
plt.plot([10, 20, 30, 40], color='pink', label='pink')  # plot(label='') : ๋ฒ”๋ก€์— ํ‘œ์‹œ๋  ๋ ˆ์ด๋ธ” ๊ฐ’ ์„ค์ •
plt.plot([40, 30, 20, 10], color='blue', label='blue')  # plot(color='') : ๊ทธ๋ž˜ํ”„์˜ ์ƒ‰์ƒ ์ง€์ •


plt.title('plotting') # ๊ทธ๋ž˜ํ”„์˜ ์ œ๋ชฉ, ์œ„์น˜, ์˜คํ”„์…‹ ๋“ฑ์„ ์ง€์ •ํ•˜๋Š” ํ•จ์ˆ˜
plt.legend()          # ์ถ• ๋ฐ/๋˜๋Š” ๊ทธ๋ฆผ๊ณผ ๊ด€๋ จ๋œ ๋ฒ”๋ก€๋ฅผ ๊ทธ๋ฆฌ๋Š” ํ•จ์ˆ˜
plt.show()

plt.show() ์‹คํ–‰ ๊ฒฐ๊ณผ

 

โ‘  ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ์˜ˆ์ œ (2)

# Jupyter Notebook

import matplotlib.pyplot as plt

# x,y์ถ•์˜ ๊ฐ’์„ ๋‘˜๋‹ค ์ง€์ •ํ•˜๋Š” ๊ฒฝ์šฐ
plt.plot([1,2,3,4], [12, 43, 25, 15])
plt.show()

plt.show() ์‹คํ–‰ ๊ฒฐ๊ณผ

 

โ‘ก ๊ทธ๋ž˜ํ”„์˜ ์„  ์ข…๋ฅ˜ ์ง€์ • ์˜ˆ์ œ

# Jupyter Notebook

import matplotlib.pyplot as plt

plt.title('linestyle') # ๊ทธ๋ž˜ํ”„์˜ ์„ ์ข…๋ฅ˜ ์ง€์ • ํ•จ์ˆ˜
plt.plot([10, 20, 30, 40], color ='r', linestyle ='--', label='dashed') # ๋นจ๊ฐ„์ƒ‰ dashed ๊ทธ๋ž˜ํ”„
plt.plot([40, 30, 20, 10], color ='g', ls =':', label ='dotted')        # ์ดˆ๋ก์ƒ‰ dotted ๊ทธ๋ž˜ํ”„
plt.legend()
plt.show()

plt.show() ์‹คํ–‰ ๊ฒฐ๊ณผ

 

 

 

 

[ maplotlib, csv ๋ชจ๋“ˆ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์˜ˆ์ œ ]

 

โ‘  ์„œ์šธ์‹œ ์ตœ๊ณ ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ ์ „์ฒ˜๋ฆฌ

# Jupyter Notebook

import csv

f = open('seoul.csv')
data = csv.reader(f)
next(data)
result = [] # ์ตœ๊ณ  ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ๋ฅผ ์ €์žฅํ•  ๋ฆฌ์ŠคํŠธ ์ƒ์„ฑ

for row in data :
    if row[-1] != '' : # data ์ „์ฒด ํ–‰์˜ ์ตœ๊ณ  ๊ธฐ์˜จ์—ด์„ ํƒ์ƒ‰, ์ตœ๊ณ  ๊ธฐ์˜จ ์—ด์˜ ๋ฐ์ดํ„ฐ๊ฐ€ ์กด์žฌํ•  ๊ฒฝ์šฐ
        result.append(float(row[-1])) # result ๋ฆฌ์ŠคํŠธ์— ์ตœ๊ณ  ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ๋ฅผ ์‹ค์ˆ˜๋กœ ๋ณ€ํ™˜ ํ›„ ์ €์žฅ
print(result)
print(len(result))     # ์ตœ๊ณ  ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ์˜ ๊ฐœ์ˆ˜(result ๋ฆฌ์ŠคํŠธ์˜ ๊ธธ์ด) ์ถœ๋ ฅ

############ [์‹คํ–‰ ๊ฒฐ๊ณผ] ############

[20.7, 22.0, 21.3, 22.0, 25.4, 21.3, 16.1,
 ...
, 11.6, 12.5, 13.1, 16.9, 18.1, 20.0, 19.0]
39168

 

โ‘ก ์„œ์šธ์‹œ ์ตœ๊ณ ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์˜ˆ์ œ (1)

# Jupyter Notebook

import csv
import matplotlib.pyplot as plt

f = open('seoul.csv')
data = csv.reader(f)
next(data)
result = []

for row in data :
    if row[-1] != '' :
        result.append(float(row[-1]))

plt.plot(result, 'r') # result ๋ฆฌ์ŠคํŠธ์— ์ €์žฅ๋œ ์ตœ๊ณ ๊ธฐ์˜จ ๊ฐ’๋“ค์„ ๋นจ๊ฐ„์ƒ‰ ๊ทธ๋ž˜ํ”„๋กœ ๊ทธ๋ฆฌ๊ธฐ
plt.show()

plt.show() ์‹คํ–‰ ๊ฒฐ๊ณผ

 

โ‘ก ์„œ์šธ์‹œ ์ตœ๊ณ ๊ธฐ์˜จ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์˜ˆ์ œ (2)

# Jupyter Notebook

import matplotlib.pyplot as plt

# plt.figure() : plot์˜ ๋ชจ๋“  ์ถ•๊ณผ ์†์„ฑ์„ ๋‹ด์€ ์ตœ์ƒ์œ„ ์ปจํ…Œ์ด๋„ˆ ํ•จ์ˆ˜(์—ฌ๋Ÿฌ ์†์„ฑ์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ํ‘œํ˜„ ๊ฐ€๋Šฅ)
# plt.figure(figsize = (x, y),  : plt ๊ทธ๋ž˜ํ”„์˜ ๊ทธ๋ฆผ์˜ ์น˜์ˆ˜ ์ง€์ • [๊ธฐ๋ณธ๊ฐ’ :(6.4, 4.8)]
#            dpi = float_num )  : ์ธ์น˜๋‹น ๋„ํŠธ ์ˆ˜ ์ง€์ • [๊ธฐ๋ณธ๊ฐ’ : 100.0]
plt.figure(figsize = (10,2), dpi = 300)
plt.plot(result, 'r')
plt.show()

plt.show() ์‹คํ–‰ ๊ฒฐ๊ณผ

 

์ €์ž‘์žํ‘œ์‹œ ๋น„์˜๋ฆฌ ๋ณ€๊ฒฝ๊ธˆ์ง€ (์ƒˆ์ฐฝ์—ด๋ฆผ)
    'ํ”„๋กœ๊ทธ๋ž˜๋ฐ ์–ธ์–ด/Python' ์นดํ…Œ๊ณ ๋ฆฌ์˜ ๋‹ค๋ฅธ ๊ธ€
    • [Python] ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๐Ÿ“ˆ (3)
    • [Python] ์ฃผํ”ผํ„ฐ ๋…ธํŠธ๋ถ์„ ์ด์šฉํ•œ ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๐Ÿ“ˆ (2)
    • [Python] ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ํ™œ์šฉ (4)
    • [Python] ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ฐ ํ™œ์šฉ (3)
    ใ‚ใกใ‚ƒใใกใ‚ƒ ้–‹็™บ่€…๐Ÿฆพ
    ใ‚ใกใ‚ƒใใกใ‚ƒ ้–‹็™บ่€…๐Ÿฆพ
    ๐Ÿ‘Š ๋ธ”๋กœ๊ทธ๋„ ๊ทผ์„ฑ์ด๋‹ค? ๐Ÿ‘Š

    ํ‹ฐ์Šคํ† ๋ฆฌํˆด๋ฐ”